Gevrey Classes

November 19, 2024

0.1 Introduction example-Euler-Ode

Consider

$$x^2 f'(x) + f(x) = x$$

Trying to solve for $\widetilde{f}(x) = \sum f_n x^n$, we find

$$(n-1) f_{n-1} + f_n = \begin{cases} 1, & n = 1 \\ 0, & n \neq 1 \end{cases}.$$

 So

$$f_n = (-1)^n (n-1)! \quad \Rightarrow \quad f \sim \sum (-1)^n n! x^{n+1}$$

 $\operatorname{Consider}$

$$F(z) = \sum (-1)^n z^n = \frac{1}{1+z}$$

then formally

$$\int_0^\infty F(xt)e^{-t}dt = \sum (-1)^n x^n \int_0^\infty t^n e^{-t}dt \sim \sum (-1)^n n! x^n$$

 \mathbf{so}

$$f(x) = x \int_0^\infty F(xt)e^{-t}dt = \int_0^\infty \frac{xe^{-t}}{1+xt}dt = \int_0^\infty \frac{1}{1+t}e^{-t/x}dt$$

is a good candidate for solution, indeed

$$x^{2}f'(x) + f(x) = \int_{0}^{\infty} \frac{1}{1+t} \left[\frac{x^{2}t}{x^{2}} + 1\right] e^{-t/x} dt = \int_{0}^{\infty} e^{-t/x} = x.$$

we can analytically continued this f in $|\arg(z)| < \pi$, and by passing through the negative ray, we get a new solution

 $f(x) + Ce^{\frac{1}{x}}$

When does it works? why it works? etc...

0.2 Borel-Laplace summation

Consider a formal power series

$$\widetilde{a}(x) = \sum_{n \ge 0}^{\infty} a_n x^n$$

such that

$$|a_n| \le C^{n+1}n!$$

We define its Borel transform transform

$$A(z) = (\mathcal{B}a)(z) = \sum_{n \ge 0}^{\infty} \frac{a_n}{n!} x^n$$

It has positive radius of convergence. If A has an analytic continuation to a NH of the positive ray, we defined the Laplace transform as

$$(\mathcal{L}A)(x) = \int_0^\infty A(xt)e^{-t}dt = \frac{1}{x}\int_0^\infty A(u)e^{-\frac{u}{x}}du \sim \widetilde{a}(x)$$

If a is such that $a = \mathcal{LB}\tilde{a}$, we say that \tilde{a} is Gevrey summable to a. Properties of Gevrey summation:

- 1. Linear
- 2. Commute with $x \mapsto cx$ and therefore with its infinitesimal generator $E = x \frac{d}{dx}$ ($Ex^n = nx^n$ diagonal)
- 3. Agree with regular sums.
- 4. at infinity changing $a(x) = \frac{1}{x}a(\frac{1}{x})$, or considering $f(x) = \int_0^\infty A(u)e^{-ux}du = \mathcal{L}_\infty A$ it diagonalize shifts

$$f(x+t) = \mathcal{L}_{\infty} \left\{ e^{-tu} A(u) \right\} (x)$$

and therefore also derivatives.

we are after a class of function such that the Borel Laplace Scheme works, and uniquely reminder the function

0.3 Gevrey functions in a sector

Consider the sector

$$S(\theta, r) = \{ z : |\arg z < \theta|, |z| < r \}, \quad \theta > 0$$

We define the class \mathcal{G}_{θ} (at the origin) as the class of all functions, f, analytic in $S(\theta, r)$ for some r > 0, and in every closed sub sector it is C^{∞} including the origin and

$$f(z) = \sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} + R_N(z)$$

where $|R_N(z)| \leq C_{\theta'}^{n+1} n! |z|^n$ for any $|\theta'| < \theta$. Some properties

1. it follows that any every function $\left|\frac{f^{(n)}(z)}{n!}\right| \leq C_{\theta'}^{n+1}n!$

- 2. vector space
- 3. definable algebra
- 4. closed under composition
- 5. division by coordinate if $f \in \mathcal{G}_{\theta}$ and f has a zero of order n at the origin.
- 6. quasianalytic if $\theta > \frac{\pi}{2}$ (i.e. if $f \in \mathcal{G}_{\theta}$. and $f \sim_{\mathcal{G}} 0$ then $f \equiv 0$)
- 7. Interpolation if $\theta < \frac{\pi}{2}$, if $|a_n| \leq C^{n+1}n!$, there is $f \in \mathcal{G}_{\theta}$ such that $f \sim_{\mathcal{G}} \sum a_n z^n$ (Borel-Ritt Lemma)

Difference then analytic category:

1. Formal solution does not grantee a solution. If $f(x^k) = g(x)$, with $g \in \mathcal{G}_{\theta}$ and $f \in C^{\infty}$, then not necessarily $f \in \mathcal{G}_{\theta}$. Indeed say k = 2 and

$$g(x) \sim \sum a_{2n} x^{2n}$$

with $a_n \simeq n!$, then

$$f(x) \sim \sum a_{2n} x^n$$

with

$$a_{2n} \asymp (2n)! \asymp n!^2$$

In dim=2 even worst when we consider blowups

2. Not known if Noetherian ring, Not known if divisible property holds, (say we know we can decide in C^{∞} the polynomial $x^3 + y^2$ is it true in \mathcal{G}_{θ}

0.4 Summation and Structure of Gevrey classes.

Consider the class of function A_{θ} consists of analytic functions, F, in at zero $\mathbb{R}_+ \cup \{z : |\arg z| < \theta, |z| > R\}$ and satisfies in any closed sub-sector

$$|F(z)| \le Ce^{|z|B}, \quad |\arg z| \le \theta' < \theta$$

We have the following characterization theorem

Theorem (Nevanlina-Sokal): $\mathcal{L} : A_{\theta} \to G_{\theta+\pi/2}$ is a bijection with inverse \mathcal{B} , moreover in $G_{\theta+\pi/2}$, \mathcal{B} can be realized as the integral transform

$$\mathcal{B}F(z) = \frac{1}{2\pi i} \int_{\partial S(\theta',r)} f(t) e^{\frac{t}{z}} \frac{dt}{t}$$

and in $G_{\theta+\pi/2}$, any function is Gervey summable

Theorem (extended Watson Lemma): If $\lambda > -1$, then $\mathcal{L} : z^{\lambda}A_{\theta}(z) \rightarrow t^{\lambda}G_{\theta+\pi/2}(t)$ is a bijection

0.5 Saddle point example- the gamma function

Let consider another example that raises a gervey function $\Gamma(z+1)=\int_0^\infty t^z \exp(-t) dt$

Claim: $\Gamma(z+1) = z^{z+1}e^{-z}\frac{1}{\sqrt{z}}f(z)$, where $f \in \mathcal{G}^{\infty}_{\pi}$

Proof: change of variable t = uz, we get

$$\Gamma(z+1) = \int_0^\infty (uz)^z \exp(-uz) z du = z^{z+1} \int_0^\infty e^{z(\log u - u)} du$$
$$= z^{z+1} e^{-z} \int_0^\infty e^{z(\log u - u + 1)} du = z^{z+1} e^{-z} \int_0^\infty e^{zg(u)} du$$

we first do the change of variable $g(u) = -t^2$,

$$\frac{1}{u} - 1du = -2t^2dt$$
$$\int_0^\infty e^{zg(u)}du = \int_{-\infty}^\infty e^{-zt^2}\frac{2u(t)tdt}{u(t) - 1}$$

then we map $t^2 = w$ and get

$$\int_{0}^{\infty} e^{zg(u)} du = \int_{0}^{\infty} \frac{1}{\sqrt{w}} e^{-zw} \left[\frac{u(\sqrt{w})\sqrt{w}dt}{u(\sqrt{w}) - 1} - \frac{u(\sqrt{-w})\sqrt{-w}dt}{u(\sqrt{-w}) - 1} \right]$$

It can be seen that

$$\frac{u(\sqrt{w})\sqrt{w}dt}{u(\sqrt{w})-1} - \frac{u(\sqrt{-w})\sqrt{-w}dt}{u(\sqrt{-w})-1} \in A_{\pi/2}$$

 \mathbf{so}

$$\int_0^\infty e^{zg(u)} du \in \frac{1}{\sqrt{z}} G_\pi^\infty$$

Remark: We can write it differently via Cauchy formula the change $\int_0^\infty e^{zg(u)} du = \int_0^\infty e^{-zw} q(w) dw$, we will get

$$q(w) = \frac{1}{\sqrt{w}} \frac{1}{2\pi i} \int_{\Gamma} \frac{\sqrt{g(s)}}{g(s) - w} ds$$

where Γ is a NH of $[0, \infty)$.